Approximation Algorithms for l0-Low Rank Approximation

نویسندگان

  • Karl Bringmann
  • Pavel Kolev
  • David P. Woodruff
چکیده

For any column A:,i the best response vector is 1, so A:,i1 T − A 0 = 2 n − 1 = 2(1 − 1/n) OPTF 1 OPTF 1 = n Boolean l0-rank-1 Theorem 3. (Sublinear) Given A ∈ 0,1 m×n with column adjacency arrays and with row and column sums, we can compute w.h.p. in time O min A 0 +m + n, ψB −1 m + n log(mn) vectors u, v such that A − uv 0 ≤ 1 + O ψB OPTB . Theorem 4. (Exact) Given A ∈ 0,1 m×n with OPTB / A 0 ≤ 1/300, we can solves exactly the Boolean l0-rank-1 problem in time 2 O OPTB 1 / A 0 poly(mn).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation Algorithms for $\ell_0$-Low Rank Approximation

We study the l0-Low Rank Approximation Problem, where the goal is, given anm×nmatrix A, to output a rank-k matrix A for which ‖A′ −A‖0 is minimized. Here, for a matrix B, ‖B‖0 denotes the number of its non-zero entries. This NP-hard variant of low rank approximation is natural for problems with no underlying metric, and its goal is to minimize the number of disagreeing data positions. We provid...

متن کامل

CS 267 Final Project: Parallel Robust PCA

Principal Component Analysis (PCA; Pearson, 1901) is a widely used method for data compression. The goal is to find the best low rank approximation of a given matrix, as judged by minimization of the `2 norm of the difference between the original matrix and the low rank approximation. However, the classical method is not resistant to corruption of individual input data points. Recently, a robus...

متن کامل

Efficient Approximation Algorithms for Point-set Diameter in Higher Dimensions

We study the problem of computing the diameter of a  set of $n$ points in $d$-dimensional Euclidean space for a fixed dimension $d$, and propose a new $(1+varepsilon)$-approximation algorithm with $O(n+ 1/varepsilon^{d-1})$ time and $O(n)$ space, where $0 < varepsilonleqslant 1$. We also show that the proposed algorithm can be modified to a $(1+O(varepsilon))$-approximation algorithm with $O(n+...

متن کامل

Algorithms for $\ell_p$ Low-Rank Approximation

We consider the problem of approximating a given matrix by a low-rank matrix so as to minimize the entrywise `p-approximation error, for any p ≥ 1; the case p = 2 is the classical SVD problem. We obtain the first provably good approximation algorithms for this version of low-rank approximation that work for every value of p ≥ 1, including p = ∞. Our algorithms are simple, easy to implement, wor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017